$a x^{2}+b x+c=0$
terday we did the
Yesterday we did
quadratic formula

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a\left(\frac{b}{2 a}\right)^{2} \frac{b^{2}}{4 a^{2}}} \\
& a x^{2}+b x+c=0 \\
& a x^{2}+b x=-c \quad \frac{b^{2}}{4 a} \\
& a\left(x+\frac{b}{a} x+\left(\frac{b}{2 a}\right)\right)=-c+\frac{b^{2}}{4 a} \\
& \frac{\left(x+\frac{b}{2 a}\right)^{2}}{4 a}=\frac{4 a c}{4 a^{2}} \\
& \sqrt{\left(x+\frac{b}{2 a}\right)^{2}}=\sqrt{\frac{-4 a c+b^{2}}{4 a^{2}}} \\
& x+\frac{b-b}{2 a^{2}}=\frac{-b}{2 a} \frac{ \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

$b^{2}-4 a c$ is called the discriminant if b^{2}-lac is negative \therefore nosolutions if $b^{2}-4 a c=0 \quad \therefore$ I solution
if $b^{2}-4 a c$ is positive $\therefore 2 a n s w e s s$
if $b^{2}-4 a c$ is perfect $\begin{gathered}\text { effect } \\ \text { root } \\ \text { or } \\ \text { or } \\ \text { (14) }\end{gathered}$
$\therefore \begin{gathered}\text { rational } \\ \text { answers }\end{gathered}$
Ex \#1 How many
roots in:

Find K so there is one real root

$$
\begin{aligned}
5 x^{2}+20 x & +k=0 \\
b^{2}-4 a c & =0 \\
20^{2}-4 \cdot 5 \cdot k & =0 \\
40-20 k & =0 \\
\frac{-20 k}{-20} & =\frac{-400}{-20} \quad k=20
\end{aligned}
$$

